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COMMENT

Absence of non-trivial asymptotic scaling in the Kashchiev
model of polynuclear growth

T J Newman and A Volmer
Institut für Theoretische Physik, Universität zu Köln, D-50937 K̈oln, Germany

Received 27 June 1995

Abstract. In this brief comment we show that, contrary to previous claims (Bartelt and Evans),
the asymptotic behaviour of the Kashchiev model of polynuclear growth is trivial in all spatial
dimensions, and therefore lies outside the Kardar–Parisi–Zhang universality class.

Within the field of non-equilibrium interface growth, one of the central issues is the existence
of dynamical scaling and associated universality classes [1, 2]. The simplest quantity which
may exhibit such scaling is the interface widthw(L, t). For a system of lateral sizeL,
the scaling form forw may be written asw(t) ∼ Lχf (t/Lz) for times t larger than some
microscopic time scale. In the limit of infiniteL, one then expects the asymptotic time
evolution of the width to followw ∼ tβ where β = χ/z. The determination of the
exponentsz andχ represents a primary objective within this field. One of the most popular
models of interface growth is due to Kardar, Parisi and Zhang (KPZ) [3], and through a
concerted effort (mostly on the numerical front), there now exist rather precise estimates
for the exponents in low spatial dimensions (see, for example, [4]). An analytic derivation
of these exponents represents an outstanding theoretical challenge.

In a recent paper [5], Bartelt and Evans (BE) presented an analysis of the Kashchiev
model [6], which is closely related to polynuclear growth (PNG) models [7–9]. This model
has the unusual feature of being exactly solvable in the sense that the average interface
height h(t) and the widthw(t) may be expressed in terms of a closed set of coupled
integral equations. A numerical study of these equations was undertaken byBE. From their
results, they concluded that the interface width of the Kashchiev model showed non-trivial
asymptotic scaling which were consistent (within numerical error) withKPZ universality.
They also raised the possibility that an exact asymptotic analysis of this model may enable
one to determine the upper critical dimension (above whichβ = 0) of theKPZ model.

To investigate such a possibility was our motivation for a closer analysis of the
Kashchiev model. Our results (to be presented below) convincingly demonstrate that the
asymptotic behaviour of the Kashchiev model is trivial in the sense that the growth exponent
β(d) = 1

2 for all d. This model therefore lies outside theKPZ universality class. Our
presentation shall henceforth be brief, and we refer the reader to [5] for details of the
formulation of the Kashchiev model.

The central quantity in the Kashchiev model is the functionθi(t) which represents the
fraction of layeri which is covered with deposited material at timet . The form ofθ1(t) is
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known exactly, and the higher functionsθi>1(t) may be generated iteratively via the integral
equations

θi+1(t) =
∫ t

0
dt ′ {1 − exp[−(t − t ′)d+1]}dθi(t

′)
dt ′

. (1)

In terms of these layer coveragesθi , the average height may be expressed as

h(t) =
∞∑
i=1

θi(t) (2)

and the mean square widthW(t) ≡ w(t)2 takes the form

W(t) =
∞∑
i=1

(2i − 1)θi(t) − h(t)2 . (3)

(These expressions differ in a minor, inessential, way from those ofBE. Note also that our
unit of time is exactly half that used byBE.)

The numerical analysis ofBE seems to have proceeded by iteratively solving the set
of integral equations for a given number of the functionsθi(t), and then summing these
functions in order to determineh(t) andW(t). This method will fail for large times as one
is forced to calculate an increasingly large number of layer coverages to ensure numerical
precision. The predictions of asymptotic scaling in accord withKPZ scaling was made on
the basis of calculating the first five layer coverages, which is insufficient to investigate the
true asymptotic regime.

A simple way around this problem is to sum the recursion relation (1) overall the layer
coveragesθi with an appropriate weight such that one derives closed integral equations for
h(t) andW(t). One then has no numerical barriers in probing the deep asymptotic regime.
The equation for the mean height, written in terms of the deviation from linear growth
1(t) ≡ h(t) − v(d)t , takes the form∫ t

0
dt ′

d1(t ′)
dt ′

exp[−(t − t ′)d+1] = 1 − exp(−td+1) − v(d)

∫ t

0
dt exp(−t ′d+1) . (4)

The d-dependent velocity is given byv(d)−1 = 0((d + 2)/(d + 1)), where0(z) is the
gamma function [10]. For the mean square width, we have∫ t

0
dt ′

dW(t ′)
dt ′

exp[−(t − t ′)d+1] = 2h(t) −
∫ t

0
dt ′

dh(t ′)
dt ′

[1 + 2h(t ′)] exp[−(t − t ′)d+1] .

(5)

The above equations are of the Volterra type, and we may therefore use relatively simple
techniques for their numerical solution. More precisely, we use a uniform grid for the
discretization, along with a trapezoidal rule for the integration [11]. The discrete time step
used here isδt = 0.001, yielding results with a precision of six significant figures. We
should emphasize that on reducing the time step further, the precision can be systematically
improved.

The reason for studying the deviation from linear growth ofh(t), via the function1(t),
is that one might expect on simple scaling grounds that1(t) ∼ tβ . In figure 1 we present our
results for d1(t)/ dt , for d = 1, 2 and 3. The function becomes increasingly oscillatory for
higher dimensions. The decay of the envelope of the oscillations is exponential after some
transient period (which grows slowly with increasing dimension). We have determined
the decay rateλ(d) for the exponential decay with high precision as a function ofd.
The inset in figure 1 shows thed dependence ofλ on a log–linear scale. In figure 2,
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Figure 1. The time derivative of the deviation ofh(t) from linear growth, d1(t)/ dt , as
a function of t , for d = 1, 2, 3. This data comes from numerical integration of (4). The
exponential decay of the envelope of oscillations is illustrated for thed = 3 curve. The inset
shows thed dependence of the decay rateλ on a log–linear scale.

Figure 2. The time derivative of the mean square fluctuations, dW(t)/ dt , as a function oft ,
for d = 1, 2, 3. This data comes from simultaneous numerical integration of (4) and (5).

we show the evolution of the time derivative ofW(t) for d = 1, 2 and 3. Results for
higher dimensions are qualitatively similar. Again we see that the pre-asymptotic behaviour
is increasingly oscillatory as one increases the dimensiond. The asymptotic behaviour,
however, is purely constant, implying thatW(t) ∼ b(d) t , and hence thatβ = 1

2 for all d.
The full dimensional dependence ofb(d) is plotted in figure 3. One may also study the pre-
asymptotic corrections to this linear form forW(t). These oscillatory corrections are also
found to have an exponentially decaying envelope, with a decay rateλ̃(d) which satisfies
the relationλ(d) ' 1.14(2)λ̃(d). These results show convincingly that the asymptotic
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Figure 3. The d dependence of the amplitudeb(d), from the asymptotic relation dW(t)/ dt ∼
b(d). The broken curve is the relation given in (6), whilst the data points are from numerical
integration of (5).

properties of the Kashchiev model are trivial; i.e. the mean height relaxes exponentially fast
to linear growth, and the interface width evolves as the square root of time.

As a powerful check on the numerical work, we may solve the integral equation
for the mean square widthW(t) in the deep asymptotic regime by making the ansatz
dW(t)/ dt ∼ b(d), and takingh(t) ∼ v(d) t , with v(d) defined previously. Inserting these
forms into (5) and takingt → ∞ allows one to extract the prefactorb(d). Explicitly one
finds

b(d) = v(d)

{
0

(
d + 3

d + 1

)
v(d)2 − 1

}
. (6)

This functional form is plotted against the numerical results in figure 3. Excellent agreement
is obtained, indicating both the correctness of the above ansatz, and the high precision of
the numerical work.

For comparison with the above results, we mention that the above equations may be
easily solved in the limits ofd = 0 andd = ∞ by use of Laplace transform methods.
One finds ford = 0, thath(t) = t and W(t) = t exactly. Ford = ∞ one has layer-by-
layer growth described byh(t) = n, n < t < n + 1 andW(t) = 0 exactly. The infinite
d results are consistent with (i) the increasingly oscillatory behaviour found numerically
for larger values ofd (a trend towards layer-by-layer growth), and with (ii)b(d) vanishing
monotonically for larged.

Finally, we illustrate the misinterpretation of the data that ledBE to conclude thatW(t)

hadKPZ-type scaling. Their conclusions arose from a plot ofW(t) versush(t). Since their
data is not in the asymptotic regime, such a plot is potentially misleading ash(t) still has
appreciable deviations from linear growth. In figure 4, we present a linear plot ofW(t)

versush(t) for d = 1, 2 and 3 for longer times than obtained byBE (cf figure 4 in [5].) It is
seen that the relationship betweenW(t) andh(t) eventually becomes linear, in agreement
with the scaling formsh(t) ∼ v(d) t andW(t) ∼ b(d) t .

We conclude by remarking that models belonging to thePNG class are certainly worthy
of study, as more realistic versions are known to exhibitKPZ scaling [8, 9]. However,



Asymptotics of the Kashchiev model 2289

Figure 4. A plot of the mean square fluctuationsW(t) versus the average heighth(t), for
d = 1, 2, 3.

any analytic treatment must be based on a less mean-field-like formulation than that of
the Kashchiev model. It is of interest to determine precisely where the crucial mean-
field assumption enters into the Kashchiev model, and whether it is possible to relax this
assumption without making the model analytically intractable.
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